

 ϵ

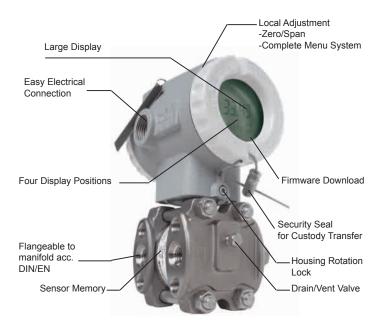
HART® & 4 to 20 mA

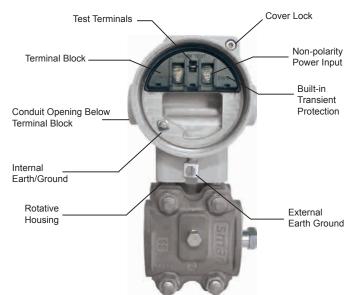
- ± 0.045% Accuracy
- ± 0.2% of URL Stability
 Guarantee For 12 Years
- 200:1 Rangeability
- 35 ms Total Response Time
- Non-volatile Flow Totalizer
- Tank Linearization
- PID Control Capability
- Advanced Diagnostics
- Bi-directional Flow Measurement
- Supports DD, EDDL, and FDT/DTM
- Non-polarity Power Input
- Built-in Transient Suppression
- SIL 2 Safety Certified to IEC 61508 by TÜV

Rahpooyan Hooshmand Dena Co.

Tel: 0098 21 73051

Fax: 0098 21 77009563

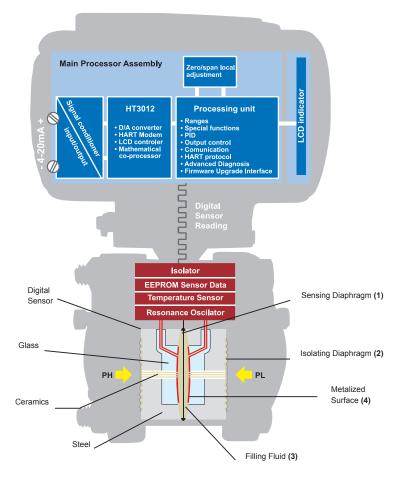

- Output current with 0.75 µA resolution;
- Low Total Probable Error (TPE);
- Output Limits according to NAMUR NE43;
- Software Management according to NAMUR NE53;
- Direct digital capacitance sensing (No A/D conversion);
- Based on technology proven in use since the early '80s;
- HART® configurable;
- User-friendly rotative display;
- Local Span/Zero calibration and easy on-site configuration;
- Easy installation, quick commissioning and setup;
- Online continuous sensor and electronic diagnostics reduce troubleshooting time and eliminate unnecessary trips to the field;
- Built-in surge protection;
- Modularity for all models;
- Persistent Flow Totalizer;
- Fully selectable constant mA output (Loop Test capability);
- Transfer functions: linear, linearization table,√x,√x³,√x⁵,
- Configurable user unit;
- Span as small as 50 Pa (0.2 inH₂O) up to a range limit of 40 MPa (5800 psi);
- Up to 32 MPa static pressure (4600 psi);
- 10,000 psi Burst Pressure Limit;
- Single electronics board covers complete range;
- Easy specification simplifying customers' Total Cost of Ownership (TCO).
- It is certified to IEC61508 for SIL 1 and SIL 2 (non-redundant) and SIL 3 (redundant) applications.



Product Highlight

LD400 consists of differential, absolute and gauge pressure transmitters as well as models for both level and remote seal applications. The **LD400** offers the best solution for all field applications and those demanding the highest performance.

LD400 offers:

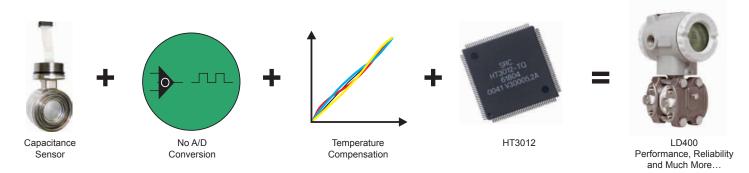

- ± 0.045% accuracy for High Performance option;
- ± 0.2 % of URL stability guarantee for 12 years;
- 200:1 rangeability;
- Compactness and lightweight;
- Safe and reliable operation.

LD400 uses the field-proven technique of capacitance cell sensor measurement.

The sensor is shown in the-picture on side. The sensing diaphragm (1) is at the cell center. The diaphragm deflects as a result of the difference between the pressures applied to the left and right sides of the sensor (PH and PL). Pressure is directly applied to the isolating diaphragms (2), which provide resistance against process fluid corrosion. The pressure is transmitted to the sensing diaphragm through the filling fluid (3).

The sensing diaphragm is a moving capacitor plate while the two metallized surfaces (4) are fixed plates. The sensing diaphragm deflection results in capacitance variations between the moving and fixed plates.

The electronic resonance circuit reads capacitance variation between the moving and fixed plates. The CPU conditions the measurement and communicates according to protocol. As there is no A/D conversion, errors and drifts during conversions are eliminated. A temperature sensor provides temperature


compensations, which combined with the sensor precision, results in high accuracy and rangeability for the **LD400**.

The process variable, as well as monitoring and diagnostics information, is provided by digital communication protocol.

Conclusion

Smar **LD400** is designed to be rugged and a highly reliable solution in pressure measurement. It delivers great application flexibility using the direct digital capacitance sensing that keeps the signal digital all the way from sensor to the output, resulting in a

higher effective resolution. All the processing is made by HT3012, the powerful mathematical co-processor that ensure fast response time and high performance for the transmitter. **LD400** is the best choice for pressure measurement.

Differential Pressure - LD400D and LD400H

Pressure is applied to high and low side and differential pressure is measured. High static pressure is supported for **LD400H** models.

Flow - LD400D and LD400H

The differential pressure is generated by a primary flow element and the square root function computes the flow measurement.

1

Gage Pressure - LD400M

The pressure is measured at the high side of the transmitter and the low side is open to the atmosphere, providing true local atmospheric reference.

Absolute Pressure - LD400A

The pressure is measured at the high side of the transmitter and the low side is at zero absolute pressure to a sealed chamber with vacuum.

Level - LD400L

The transmitter has a flange-mounted unit for direct installation on vessels. Extended diaphragms are also available. The closed tank low side can compensate for ullage pressure.

Sanitary - LD400S

LD400S is especially designed for food and other applications where sanitary connections are required. With threaded or "tri-clamp" connections, it allows quick and easy cleaning and maintenance. The flush connection enables deposit removal without disconnecting the seal.

Tri-clamp and other connections are compliant to 3A-7403 standard for food grade applications. For further information, see the Smar SR301 Series Catalog.

Remote Seals

SR301 is a remote seal designed for chemical and thermal isolation. **LD400** can be assembled with separate diaphragm seals in either one or both sides of the sensor. SR301 options include: "T" Type Flanged (SR301T), Threaded (SR301R), Pancake (SR301P) where those three models with an optional flush connection, Sanitary (SR301S), Flanged with Extension (SR301E) and Pancake with Extension (SR301Q).

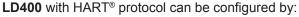
Typical applications for **LD400** with remote seals:

- Corrosive process fluid;
- Suspended solids or viscous process fluid;
- Process fluids that may freeze or solidify;
- Process temperatures higher than supported by transmitters;
- Replaces impulse lines and condensate legs;
- Bubble system.

See the SR301 Series Catalog for further information regarding application and specification.

Manifold Valves

Smar manifold valves provide all of the necessary safety for field maintenance of **LD400** transmitters. Working at pressures of up to 6,000 psi, they are easy to handle and lighter than others in the market. Pressure and leakage tests are present in 100% of the valves, also for models mounted on the transmitter. For further information, please see the Smar Manifold Valves Catalog.


Certified for use in SIS Applications

The **LD400 SIS** is certified by TÜV and meets IEC 61508 standard recommendations for SIS (Safety Instrumented Systems) applications. For more informations about SIS, please consult the **LD400** Operation and Maintenace Instruction Manual.

LD400 is available in HART® technology. These instruments can be configured with Smar software and other manufacturer configuration tools. Local adjustment is available in all **LD400**. It is possible to configure zero and span, totalization, setpoint and other control functions using the magnetic screwdriver.

Smar has developed AssetView, which is a userfriendly Web Tool that can be accessed anywhere and anytime using an internet browser. It is designed for management and diagnostics of field devices, to ensure reactive, preventive, predictive and proactive maintenance.

- Smar CONF401 for Windows:
- Smar DDCON 100 for Windows:
- Smar HPC401 for most recent models of Palms;
- Other manufacturers' configuration tools based on DD (Device Description), Simatic PDM, and FDT/DTM, such as AMSTM, FieldCareTM, PACTwareTM, HHT275 and HHT375, PRM Device Viewer.

For **LD400** management and diagnostics, AssetView ensures continuous information monitoring.

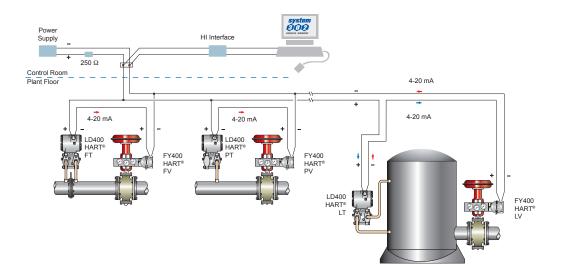
Universal HART® Configuration Software

HPC401

Advanced Diagnostics

Smar **LD400** provides diagnostics on several levels allowing quick maintenance and in a safe way:

- Sensor Level
- Electronics Level
- Loop integrity Level


The **LD400** performs advanced diagnostics upon powering up the instrument. It verifies the integrity of important data in order for the device to work properly: the characterization data, the customer entered data, the calibration data and the RAM memory.

During the operation, the validity of the measured pressure is continuously checked. Using advanced algorithms, the transmitter can identify when there is a failure and if it is due to a hardware failure or a process overload condition. It also checks over and under temperature conditions. The user can configure the safe condition according to NAMUR NE43. When the result is failure it can cause an incorrect output, the transmitter will immediately switch the output current allowing actions by the user to identify and correct the problem.

The **LD400 SIS** model not only includes all the previously mentioned diagnostics but also some extra ones to reach the required safety level. They are:

- 4-20 mA Current Output Monitoring;
- · Memory and CPU Integrity Checking;
- · Crystal Monitoring;
- Firmware Execution Sequence Monitoring.

Applications - LD400 HART®

Functional Specifications

Process Fluid	Liquid, gas or steam.									
Output and Communication Protocol	Two-wire, 4-20 mA controlled according to NAMUR NE43 specification, with super-imposed digital HART® Protocol.									
Power Supply	12 to 55 Vdc. Input without polarization, with protection for transient suppressor and complemented by a Lightning Arrester. Transient Suppressor Vmax = 65 Vp; Differential Mode - bi-directional; Low current leak and capacitance; Meets the standards: IEEE61000-4-4 and IEEE61000-4-5; Less than 5 ns response time. Lightning Arrester V = 1000 Vdc; Discharge current peak = 10 kA; Nominal current = 10 A for 1 s; Commom mode - low leak current and capacitance									
Indicator	Rotative LCD, with 4½-numerical digit and 5-character alphanumerical. Function and status icons.									
Hazardous Area Certifications	Explosion Proof, intrinsically safe and increased safety (CEPEL) Explosion Proof, intrinsically safe and dust ignition proof (FM) (Pending)									
	Authorized representative in European Community Smar Gmbh-Rheingaustrasse 9-55545 Bad Kreuzanach									
	PED Directive (97/23/EC) - Pressure Equipment Directive This product is in compliance with the directive and it was designed and manufactured in accordance with sound engineering practice using several standards from ANSI, ASTM, DIN and JIS.									
European Directive	EMC Directive (2004/108/EC) - Eletromagnetic Compatibility The EMC test was performed according to IEC standard: IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005. For use in environment only. Keep the shield insulated at the instrument side, connecting the other one to the ground if necessary to use shielded cable.									
Information	ATEX Directive (94/9/EC) - Equipment and protective systems intended for use in potentially explosive atmospheres. This product was certified according European Standards at NEMKO and EXAM (old DMT). The certified body for manufacturing quality assessment is EXAM (number 0158).									
	LVD Directive 2006/95/EC - Electrical Equipment designed for use within certain voltage limit According the LVD directive Annex II the equipment under ATEX "Electrical equipment for use in a explosive atmosphere" directive are excluded from scope from this directive.									
	The EC declarations of conformity for all applicable European directives for this product can be found at www.smar.com.									
Zero and Span Adjustments	Non-interactive, via local adjustment and digital communication. Local adjustment jumper with 3 positions: Simple, Disabled and Complete.									
Load Limitation	The equation to determine the maximum load resistance this described below: Maximum Load Resistence = [46.07*(Supply Voltage – 10.5)] Ohms									
Failure Alarm (Diagnostics)	Detailed diagnostics through communication. Sensor failure indication and overpressure indication. In case of sensor or circuit failure, the self-diagnostics drives the output to 3.6 or 21.0 mA, according to the user's choice and NAMUR NE43 specification.									

Temperature Limits	Ambient: -40 to 85 °C (-40 to 185 °F) Process: -40 to 100 °C (-40 to 212 °F) (Silicone Oil) -40 to 85 °C (-40 to 185 °F) (Inert Halocarbon Oil) 0 to 85 °C (32 to 185 °F) (Fluorolube Oil) -20 to 85 °C (-4 to 185 °F) (Inert Krytox Oil and Fomblim Oil) -25 to 100 °C (-13 to 212 °F) (Viton O'Ring) -40 to 150 °C (-40 to 302 °F) (Level Model) Storage: -40 to 100 °C (-40 to 212 °F) Digital Display: -20 to 80 °C (-40 to 185 °F) (Withou Damage)										
Configuration	By digital communication using the configuration software CONF401, DDCON 100 (for Windows) or HPC401 (for Palms), and can be partially configured through local adjustment. LD400 can be configured using third-party configuration tools. Firmware downloading via BDM. Writing-protection jumper.										
Overpressure and Static Pressure Limits	From 3.45 kPa absolut (0.5 psia) to: 0.5 MPa (72.52 psi) for range 0 8 MPa (1150 psi) for range 1 16 MPa (2300 psi) for ranges 2, 3 and 4 32 MPa (4600 psi) for models H and A5 40 MPa (5800 psi) for model M5 52 MPa (7500 psi) for model M6, A6 Flange test pressure: 10000 psi (68.95 MPa) For ANSI/DIN Level flanges (Level Transmitters): 150#: 6 psia to 235 psi (-0.6 to 16 bar) at 199.4 °F (93 °C) 300#: 6 psia to 620 psi (-0.6 to 43 bar) at 199.4 °F (93 °C) 600#: 6 psia to 1240 psi (-0.6 to 85 bar) at 199.4 °F (93 °C) PN10/16: -60 kPa to 1.02 MPa (-0.6 to 10.2 bar) at 212 °F (100 °C) PN25/40: -60 kPa to 2.55 MPa (-0.6 to 25.5 bar) at 212 °F (100 °C) The above pressures will not damage the transmitter, but a new calibration may be necessary.										
Turn-on Time	Performs within specifications in less than 3 seconds after power is applied to the transmitter.										
Humidity Limits	0 to 100% RH (Relative Humidity).										
Volumetric Displacement	Less than 0.15 cm³ (0.01 in³).										
Damping Adjustment	User configurable from 0 to 128 seconds (via digital communication or local adjustment).										

Performance Specifications

Reference Conditions	Span starting at zero, temperature of 25 °C (77 °F), atmospheric pressure, power supply of 24 Vdc, Halocarbon or Silicone oil fill fluid, isolating diaphragms in 316L SST and digital trim equal to lower and upper range values.
-------------------------	--

Stability

For ranges 2, 3, 4, 5 or 6:

High Performance: ± 0.2% of URL for 12 years

Standard: ± 0.15% of URL for 7 years

For ± 20 °C temperature changes, 0-100% relative humidity, up to 7 MPa (70 bar) line pressure, installation according to the best practices and adequate assembling for processes in which atoms of hydrogen can be generated (hydrogen migration).

For range 1:

High Performance: ± 0.3% of URL for 12 years

Standard: ± 0.3% of URL for 7 years

For ± 20 °C temperature changes, 0-100% relative humidity, up to 3.5 kPa (35 mbar) line pressure, installation according to the best practices and adequate assembling for processes in which atoms of hydrogen can be generated (hydrogen migration).

For range 0:

High Performance: ± 0.4% of URL for 12 years

Standard: ± 0.4% of URL for 7 years

For ± 20 °C temperature changes, 0-100% relative humidity, up to 100 kPa (1 bar) line pressure, installation according to the best practices and adequate assembling for processes in which atoms of hydrogen can be generated (hydrogen migration).

STANDARD:

Ranges D0 or M0:

0.16 URL ≤ span ≤ URL: ± 0.1 % of span

0.05 URL \leq span < 0.16 URL: \pm [0.0545 + 0.0073 URL/span] % of span

Ranges D1 or M1:

0.16 URL ≤ span ≤ URL: ± 0.06% of span

0.025 URL ≤ span < 0.16 URL: ± [0.0364 + 0.0038 URL/span] % of span

Ranges D2, D3, D4, M2, M3, M4, H2, H3 or H4:

0.16 URL ≤ span ≤ URL: \pm 0.06% of span

0.025 URL ≤ span < **0.16 URL**: \pm [0.0364 + 0.0038 URL/span] % of span **0.005 URL** ≤ span < **0.025 URL**: \pm [0.0015 + 0.0047 URL/span] % of span

Ranges M5, H5, S2, S3, S4 or S5:

0.16 URL ≤ span ≤ URL: ± 0.065 % of span

0.025 URL ≤ span < 0.16 URL: \pm [0.0326 + 0.0052 URL/span] % of span **0.0083 URL ≤ span < 0.025 URL:** \pm [0.01 + 0.0058 URL/span] % of span

Range M6:

0.16 URL ≤ span ≤ URL: ± 0.08 % of span

0.025 URL ≤ span < **0.16 URL**: \pm [0.0504 + 0.0047 URL/span] % of span **0.0083 URL** ≤ span < **0.025 URL**: \pm [0.005 + 0.0059 URL/span] % of span

Range A1:

± [0.0667 + 0.0333 URL/span] % of span

Range A2:

0.16 URL ≤ span ≤ URL: ± 0.08 % of span

0.05 URL ≤ span < **0.16 URL**: \pm [0.0482 + 0.0051 URL/span] % of span

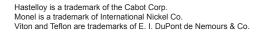
Ranges A3 or A4:

0.16 URL ≤ span ≤ URL: ± 0.065 % of span

0.025 URL ≤ span < **0.16 URL**: \pm [0.0326 + 0.0052 URL/span] % of span **0.0083 URL** ≤ span < **0.025 URL**: \pm [0.005 + 0.0059 URL/span] % of span

Accuracy

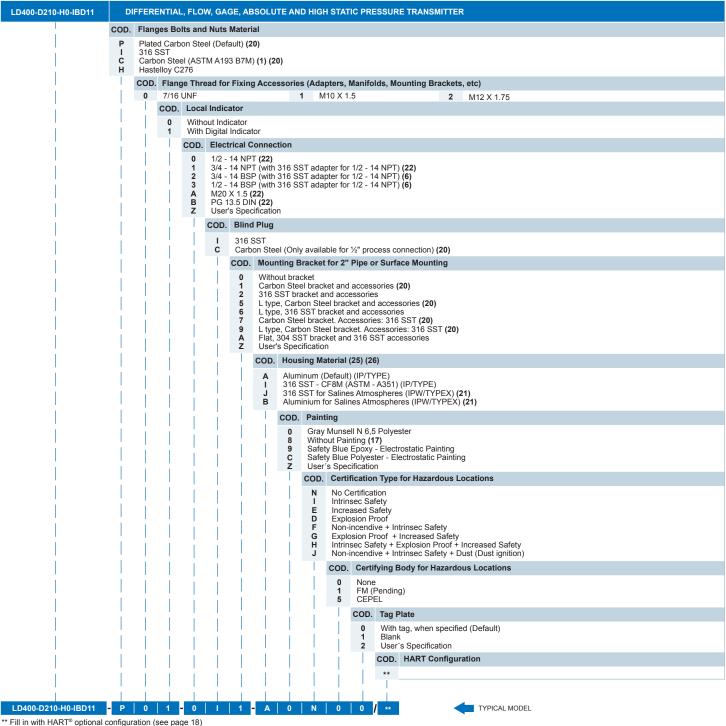
Accuracy	Range A5: 0.16 URL ≤ span ≤ URL: ± 0.075 % of span 0.025 URL ≤ span < 0.16 URL: ± [0.0443 + 0.0049 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.001 + 0.006 URL/span] % of span 0.0083 URL ≤ span ≤ URL: ± 0.08 % of span 0.025 URL ≤ span < 0.16 URL: ± [0.0504 + 0.0047 URL/span] % of span 0.025 URL ≤ span < 0.16 URL: ± [0.0504 + 0.0047 URL/span] % of span 0.083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0059 URL/span] % of span 0.16 URL ≤ span ≤ URL: ± 0.06% of span 0.05 URL ≤ span ≤ URL: ± [0.0009 + 0.0095 URL/span] % of span Range D1 or M1: 0.16 URL ≤ span ≤ URL: ± 0.05 % of span 0.025 URL ≤ span < 0.16 URL: ± [0.0262 + 0.0038 URL/span] % of span Ranges D2, D3, D4, M2, M3 or M4: 0.16 URL ≤ span ≤ URL: ± 0.045 % of span 0.025 URL ≤ span < 0.16 URL: ± [0.0209 + 0.0039 URL/span] % of span 0.0505 URL ≤ span < 0.16 URL: ± [0.0205 + 0.0043 URL/span] % of span 0.0505 URL ≤ span < 0.16 URL: ± [0.0055 + 0.0043 URL/span] % of span 0.0505 URL ≤ span < 0.025 URL: ± [0.0055 + 0.0040 URL/span] % of span 0.0505 URL ≤ span < 0.016 URL: ± [0.0263 + 0.0046 URL/span] % of span 0.025 URL ≤ span < 0.016 URL: ± [0.015 + 0.0049 URL/span] % of span 0.025 URL ≤ span < 0.025 URL: ± [0.005 + 0.0040 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.0463 + 0.0046 URL/span] % of span 0.0083 URL ≤ span < 0.016 URL: ± [0.0463 + 0.0046 URL/span] % of span 0.0083 URL ≤ span < 0.016 URL: ± [0.005 + 0.0056 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0056 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0056 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0056 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0056 URL/span] % of span 0.0083 URL ≤ span < 0.025 URL: ± [0.005 + 0.0056 URL/span] % of span
Power Supply Effect	± 0.005% of calibrated span per Volt.
Vibration Effect	$\pm0.1\%$ URL for field with high vibration level or pipeline with high vibration, according to IEC 60770-1 specification: 10-60 Hz, 0.21 mm peak displacement / 60-2000 Hz, 29.4 m/s² acceleration amplitude.
Temperature Effect	For ranges 2, 3, 4, 5 or 6, except level and sanitary transmitters: 0.1 URL \leq span \leq URL: \pm [0.0205% URL + 0.0795% span] per 20 °C (68 °F) span < 0.1 URL: \pm [0.021% URL + 0.075% span] per 20 °C (68 °F) For range 1: 0.1 URL \leq span \leq URL: \pm [0.05% URL + 0.08% span] per 20 °C (68 °F) span < 0.1 URL: \pm [0.055% URL + 0.03% span] per 20 °C (68 °F) For range 0: 0.1 URL \leq span \leq URL: \pm [0.1% URL + 0.1% span] per 20 °C (68 °F) span < 0.1 URL: \pm [0.105% URL + 0.05% span] per 20 °C (68 °F)


Static Pressure Effect	Zero Error: For range 5*: ± 0.05% URL (± 0.1% for Tantalum diaphragm) per 7 MPa (1000 psi) For range 2, 3 or 4*: ±0.025% URL (± 0.1% for Tantalum diaphragm) per 7 MPa (1000 psi) For range 1: 0.05 % URL per 1.7 MPa (250 psi) For range 0: ± 0.1% URL per 0.5 MPa (5 bar) For Level or Sanitary Transmitters: ± 0.1% URL per 3.5 MPa (500 psi) The zero error is a systematic error that can be eliminated by calibrating at the operating static pressure. Span Error: For ranges 2, 3, 4 or 5*: Correctable to ± 0.1% of reading per 7 MPa (1000 psi) For range 1: Correctable to ± 0.1% of reading per 1.7 MPa (250 psi) For range 0: Correctable to ± 0.2% of reading per 0.5 MPa (5 bar) For Level or Sanitary Transmitters: Correctable to ± 0.1% URL per 3.5 MPa (500 psi) *Except for level or sanitary transmitters										
Mounting Position Effect	Zero shift of up	o to 250 Pa (1 inH ₂ O) which can be calibr	ated out.								
Electromagnetic Interference Effect	According to II	EC61326-1:2006, IEC61326-2-3:2006, IE	C61000-6-4:2006, IEC61000-6-2:2005								
Rangeability	MODEL D0 D1 D2 D3 D4 M0 M1 M2 M3 M4 M5 M6 A0 A1 A2 A3 A4 A5 A6 H2 H3 H4 H5 L2 L3 L4 L5 S2 S3 S4 S5	20:1 40:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 200:1 120:1	RANGEABILITY FOR LD400 SIS 10:1 10:1 20:1 20:1 20:1 20:1 10:1 10:								

Physical Specifications

Electrical Connection	½ - 14 NPT ¾ - 14 NPT (with 316 SST adapter for ½ - 14 NPT) M20 X 1.5 ¾ - 14 BSP (with 316 SST adapter for ½ - 14 NPT) PG 13.5 DIN ½ - 14 BSP (with 316 SST adapter for ½ - 14 NPT)										
Process Connection	See ordering cod	tion: ¼ - 18 NPT or ½ -14 NPT (with adapter). le for more options. tters, please see ordering code.									
Wetted Parts	316L SST, Haste Drain/Vent Valve Plated Carbon St Flanges: Plated Carbon St or Monel 400. Wetted O'Ring (Buna-N, Viton™,	Plated Carbon Steel, 316 SST CF8M (ASTM - A351), Hastelloy C276 - CW-12MW, (ASTM - A494)									
Nonwetted Parts	Complies with N *The IP66/68W sealing test to NBR 8094 / ASTM B 117 Blank Flange: When flange ada otherwise blank Level Flange (L 316 L. Fill Fluid: Silicone, Fluoroli Cover O'Ring: Buna-N. Mounting Brack Plated Carbon S Accessories (bol Flange Bolts ar Plated Carbon S	m with epoxy painting or 316 SST - CF8M (ASTM - A351) housing. EMA 4X/6P, IP66 or IP66W* and IP68 or IP68W*. I (immersion) was performed at 1 bar for 24 hours. For any other situation, please consult Smar. IP66/68W tested for 200h according standard. Repter and Drain/Vent material are in Carbon Steel, blank flange is in Carbon Steel, flange is in 316 SST CF8M (ASTM - A351). D400L): Liber Company of the situation of the sit									
Mounting	b) Optional unive	ed for Level models. ersal mounting bracket for surface or vertical/horizontal 2"-pipe (DN 50). e integrated to the transmitter. bing for closely coupled transmitter/orifice flange combinations.									
Approximate Weights		models, except level transmitters. Ib to 20 lb): level transmitters depending on the flanges, extension and materials.									
Control Functions Characteristics (Optional)	Control Block (PID) and Totalization (TOT). Note: The PID block isn't available for use in SIS mode.										

Fluorolube is a trademark of Hooker Chemical Corp. Halocarbon is a trademark of Halocarbon. HART® is a trademark of HART® Communication Foundation. All other trademarks are the property of their respective owners Smar Pressure Transmitters are protected by US patent number 6,433,791 $\,$



MODEL	DIFF	ERENTIAL,	FLOW, C	GAGE,	ABSOI	LUTE	AND I	IIGH ST	TATIC PRI	ESSURE 1	RAN	SMITTER					
LD400	Smar	Smart Pressure Transmitter Range Limits Range Limits Turn Down															
	COD.	Туре						Mi				Ra Min	nge Lim Max	iits Unit	Max		
	D0 D1 D2 D3 D4	Differentia Differentia Differentia Differentia Differentia	II and Flow II and Flow II and Flow	w w					0 250	kPa kPa kPa kPa kPa		-10 -50 -500 -2500 -25	10 50 500 2500 25	mbar mbar mbar mbar bar	20 40 200 200 200		
	M0 M1 M2 M3 M4 M5	Gage Gage Gage Gage Gage Gage							0 250 0 2500 1 25	kPa kPa kPa kPa kPa MPa MPa		-10 -50 -500 -1000 -1 -1 -1	10 50 500 2500 25 25 250 400	mbar mbar mbar mbar bar bar bar	20 40 200 200 200 120 120		Note: The range can be extended up to 0.75 LRL* and 1.2 URL** with small degradation of accuracy. *LRL = Lower range limit **URL = Upper range limit
	A0 A1 A2 A3 A4 A5 A6	Absolute Absolute Absolute Absolute Absolute Absolute							0 1 0 5 0 50 0 250 0 2500 0 25 0 40	kPa kPa kPa kPa kPa MPa MPa		0 0 0 0 0	7,5 37 500 2500 25 25 250 400	mmHg mmHga mbar mbar bar bar bar	20 4 20 120 120 120 120		Due to differences in mechanical project, A1 range has turn-down lower than A0 range.
	H2 H3 H4 H5	Differentia Differentia Differentia Differentia	Il Pressur	e for Hi e for Hi	igh Stat igh Stat	ic Pr	essure essure	-5 -25 -250 -2	0 250 0 2500	kPa kPa kPa MPa		-500 -2500 -25 -250	500 2500 25 25	mbar mbar bar bar	120 120 120 120		
		2 316 3 Ha 4 Ha 5 Mo 7 Tar 8 Tar 9 316 A Mo	6L SST 6L SST stelloy C2 stelloy C2 nnel 400 ntalum ntalum 6L SST nnel 400 6L SST	Inei 276 Silio 276 Inei Silio Silio Inei For For	cone O rt (Fluo cone O cone O rt (Fluo mblim C mblim C	rolub il (1) rolub il (1) il (3) rolub Dil (12 Dil (1)	e Oil) (1 (3) (9) (9) e Oil) (2 2)) (19) 2) (3) (1	EGIJKLM PQR	GP 316L Monel 40	SST - SST - SST - SST - el 400 el 400 T	Inert OP Silic OP Inert Inert OP Inert Silic Inert	(Krytox one Oil ((Fluorolu) (Krytox (Krytox one Oil ((Krytox one Oil ((Krytox one Oil ((Krytox one Oil (ube Oil) (3) Oil) (1) (3	(19) (19) (4) (18) (19) (3) (19) (18) (19) (3) (19) (19)	T U V	Tantalum
		COD. Standard High Performance (15) COD. Communication Protocol H HART® & 4 to 20 mA COD. Safety Options 0 Standard - For use in measurement and control 1 SIS (Safety Instrumented Systems) (24) COD. Flange(s), Adapter(s) and Drain/Vent Valves Material P Plated CS (Drain/Vent In) (20)															
						0 B E K T V	Buna- Ethyle Kalrez Teflon Viton	ne - Pro (3)	opylene (1	,				Note:	O'Rings are no sides with Re		
							A D			nt site to Pro	cess	Connectio	n)		re	comm	ter drain/vent operation, vent valves are strongly nended. ent valve not available on the sides with remote seals.
								0 11 1 13 3 F1 9 L B H B H H H H H H V V V V Z	/4 - 18 NF /2 - 14 NF Flange Sea /2 - 14 NF cow Volum digh Side: digh Side: digh Side: s mm hole /2 - 14 BS Manifold V Jser's Spe DD. Spe	Flange wi 1/2 - 14 N Low Volur without th SP (With A alve integr cification cial Appli out Specia	nt Adapted dapted ded plot the PV for Re PT ar th plug PT ar me Flaread (dapted ated the cation al Clean	lug for Rei DF Insert mote Seal d Low Sic g for Rem d Low Sic ange for R According r) o the trans	(5) (7) (1 (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(6) (8) ge with plu and Low Volume FI eal and L 19213) (1	ig for Remote Side: 1/2 - 14 ange for Remo ow Side: 1/2 - 3)	NPT (te Sea 14 NP	10) (3) al (10) (3) ∵ (10) (3)
LD400	- D2	1 0	- н	0 -	1	 B	D	1	1	•	—	TYPICAL M	ODEL				

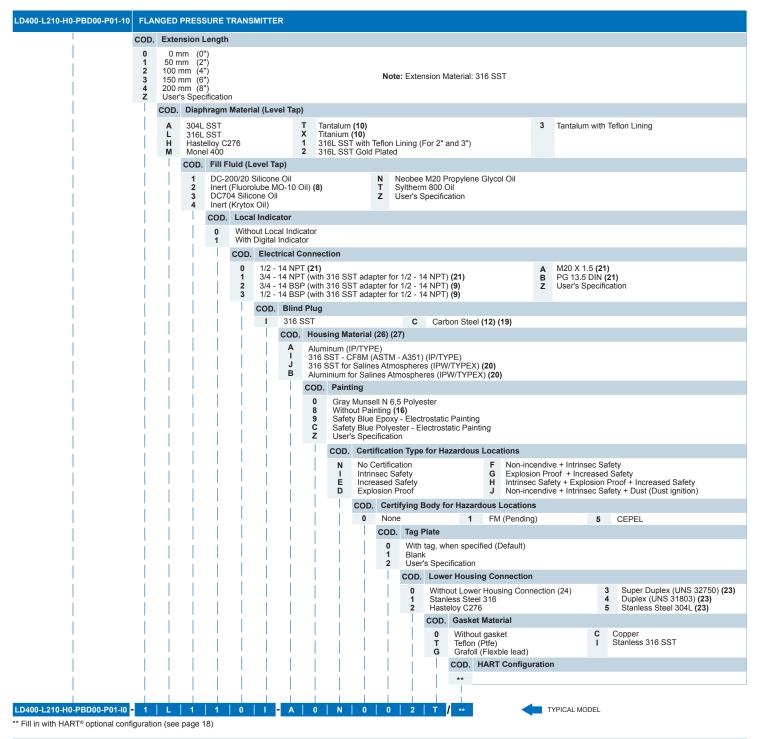
Orderina Code (Continued)

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
- (2) Not available for absolute models nor for vacuum applications.
- (3) Not available for range 0 and 1.
- (4) Not recommended for vacuum service
- (5) Maximum pressure 24 bar.
- (6) Options not certified for use in hazardous locations.
- (7) Drain/Vent not applicable.
- (8) For remote seal only 316 SST CF8M (ASTM A351) flange is available (7/16 UNF).
- (9) Silicone Oil is not recommended for oxygen (O₂) or Chlorine service (10) Only available for differential pressure transmitters.
- (11) O'Ring should be Viton or Kalrez.
- (12) Not available for range 0.
- (13) Only available for pressure transmitters D4 or H4 and 7/16 UNF or M10 x 1.5 flange thread for fixing accessories.
- (14) Degrease cleaning not available for carbon steel flanges.
- (15) Only available for differential and gage models.

- (16) Only available for flange with PVDF (Kynar) insert.
- (17) Not available for aluminum housing.(18) Effective for hydrogen migration process.
- (19) Not applicable for saline atmosphere.

- (20) Not applicable for saline atmosphere.
 (21) IPW/TYPEX tested for 200h to according NBR 8094 / ASTM B 117 standard.
- (22) Certificate for use in Explosion Proof (CEPEL).
- (23) The D0 range should not be used for flow measurement.
- (24) SIL 1 and SIL 2 (non-redundant) and SIL 3 (redundant) applications. (25) IPX8 tested in 10 meters of water column for 24 hours.
- (26) Ingress Protection:

Products	CEPEL	NEMKO / EXAM	FM
LD400	IP66/68W	IP66/68W	Type 4X/6P



			ED PRE			ANSM	ITTE	R												
_D400			ressure '	Transı		ange	Limit	ts		R	inge Lir	mits		Turn Dow	vn					
С	OD.	Тур	е		Mii		Vlax	Unit		Min	Max			Max						
	L2 L3 L4	Leve Leve	el el		-50 -250 -2500	0 25	50 250 500	kPa kPa kPa		500 2500 -25	500 2500 25	mbai mbai bai	r r	120 120 120		l a	RL an	d 1.2 U cy. The	in be extended up RL with small degra upper range value	adation of
	L5	Leve			-2!		25	MPa		-250	250	bai	r	120		ı	imited	to the fl	ange rating.	
	 	1 2 3 4 5	316L S 316L S Hastel Hastel Monel Tantal	SST SST loy C2 loy C2 400	276 : 276 :	Silicon Inert (F Silicon Inert (F Silicon	ie Oil Fluoro ie Oil Fluoro ie Oil	(2) olube Oi (1) (2) lube Oil) (1) (2)	i) (3) (18 (1) (3) (1	8)	G Tanta I GP 3 J GP 3 K Mon	316L SS 316L SS iel 400	T - OF T - OF	Inert (Kryt Silicone O Inert (Fluor Inert (Kryt	ox Oil) (1) (18) ox Oil) (18) oil (9) (16) rolube Oil) (3) (16) (10) ox Oil) (1) (18) ox Oil) (16) (18)	18) V W	316L 316L 316L	6L SST SST - C SST - C SST - C	F - OP Inert (Krytox OP Silicone Oil (OP Inert (Fluorolu OP Inert (Krytox	(9) (16) ibe Oil) (3) (16) Oil) (16) (18)
	 	7 8 9 A D	Tantal 316L S Monel 316L S	um SST 400 SST		Fombli Fombli Inert (F	Fluoro im Oi im Oi Kryto:	olube Oi il	i) (3) (18 8))	M GP N P GP N Q 316L	316L SS Monel 40 Monel 40 L SST telloy C2	00	Silicone C Inert (Kryt Inert (Kryt				8ST - C	OP Inert (Krytox Gold Plated OP= (, , ,
		i	COD.	Stand		ce Cla	ISS													
 	!			COD.		munic	catio	n Protoc	col											
				Н	HAR	T® & 4	to 20	0 mA												
					COD.	Safe	ty O	ptions												
			i		0				se in me						1 SIS (Safety Ins	trumer	ted Sys	stems) (25)	
	Ĺ		1		i	COD		ange(s) , 04L SST	, Adapte	r(s) a	nd Drai	in/vent	vaives	Material F	Manal 400 Plates	d Por (For	UE An	nligatio	no) (1)	
				İ		P H I	PI Ha	ated CS astelloy 16 SST -	(Drain/\ C276 (C' CF8M (\text{ited O'R}	W-12 ASTM	MW, AS 1 A351)	TM - A4 (1)				casting (1 (ASTM A) 351) ([rain/Ve	ent In Hastelloy C27 vith PVDF (Kynar) Ir	
			į		İ		0	Bur	hout O'R na-N ylene - F	•	ene		K T V	Kalrez Teflon Viton		No			re not available on with Remote Seals.	
	ŀ	i		i				COE). Drair	n/Ven	t Positio	on (Low	Side)							
								0 A D U		n/Vent	ain/Ven (Oppos		ocess	Connection)		strong	y recor	in/vent operation, vent nmended. Drain/ver ne sides with remote	nt valve not
	1			1				Ī	COD.	Pro	cess Co	onnectio	on (Lo	w Side)						
	!								0	1/4	- 18 NP	T (Witho	out Ada	apter)					Adapter)	
							 	Ì	1 3 5 9	Rer 1/2	note Se	T (With all (With all (With all (With all (With all (Low))	Plug) with P\		3) (4) (6)	V With	out Cor		th Welded Plug า (Mounted with Gaุกา	ge Flange)
								į		0 1 2	No S Degr	cial App Special C rease Cl Jum App	Cleanir eaning	ng g (Oxygen o	r Chlorine Service	e) (11)				
							i	i			COD.				s Material (Low S	Side)				
			į		İ						P I C	Plated 316 S	d Carb ST	on Steel (De	•	,	ŀ	H Ha	astelloy C276	
	1	i					- [İ						, , , , ,	ories (Ad	apters	, Manif	olds, Mounting Bra	ackets, etc)
												0 1 2	M10	JNF (Defau X 1.5 X 1.75	lt)					
											İ		COD.	Process C	Connection (High	Side)				
								 					U V W O P Q	1" 300 # (/ 1" 600 # (/ 1 1/2" 150 1 1/2" 300	ANSI B16.5) (28) ANSI B16.5) (28) ANSI B16.5) (28) # (ANSI B16.5) (2 # (ANSI B16.5) (2 # (ANSI B16.5) (2	22)	D 5 R E 6	DN 25 DN 40 DN 5 DN 8	0 # (ANSI B16.5) 5 PN10/40 (DIN EN 1) 0 PN10/40 (DIN EN 1) 0 PN 10/40 (DIN EI 0 PN 10/40 (DIN EI 00 PN 10/16 (DIN E	092-1) (22) N 1092-1) (2 N 1092-1) (2
													9 A B 1 2 C	2" 150 # (/ 2" 300 # (/ 2" 600 # (/ 3" 150 # (/ 3" 300 # (/ 3" 600 # (/	ANSI B16.5) ANSI B16.5) ANSI B16.5) ANSI B16.5) ANSI B16.5) ANSI B16.5)		8 H F G M S	DN 1 10K 5 10K 5 10K 8 20K 1	00 PN 25/40 (DIN E 100A (JIS 2202) (22) 50A (JIS 2202) (22) 80A (JIS 2202) (22) 100 (JIS 2202) (22) 10A (JIS 2202) (22)	EN 1092-1) ()
							į	į					N 3 4	4" 150 # (/	ANSI B16.5 RTJ) ANSI B16.5) ANSI B16.5)		K L Z	20K 8	50A (JIS 2202) (22) 80A (JIS 2202) (22) s Specification (22)	
	l			i	1	1	- 1	I I	-	1		1	1		e and Flange Ma		gh Sid			_
														H Has J 304	SL SST (Integral F stelloy C276 (Integ I SST (Slip-on Fla	gral Flang nge)	e)	K L Z	316 SST (Slip-on Carbon Steel (Slip User's Specification	o-on Flange)
 														0 1 2 3	Raised Face - Flat Face - FF Ring Joint Face	RF (14)	13)	4 5 6	Large Tongue Fa	ce (14) (15)

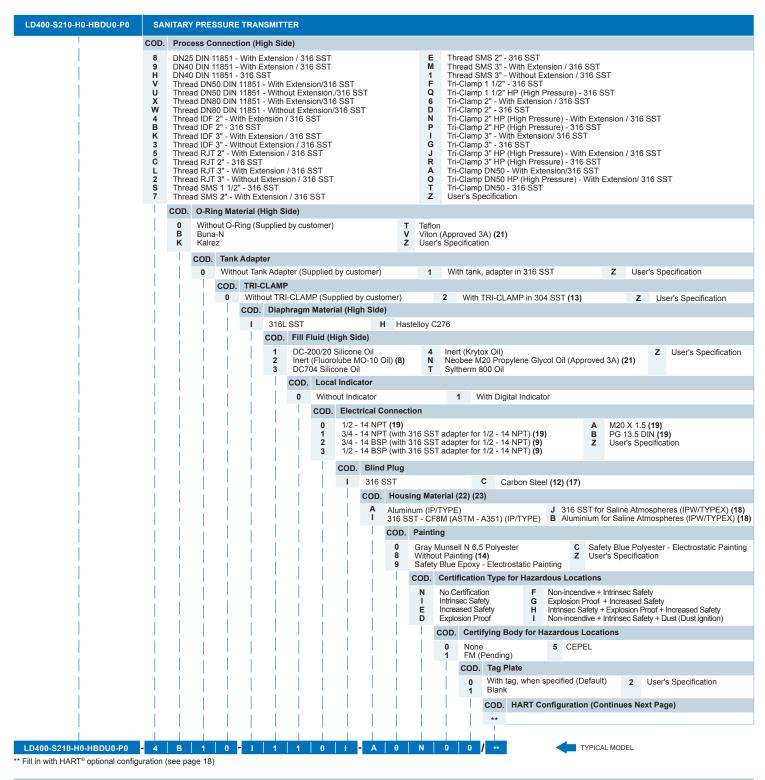
Ordering Code (Continued)

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
- (2) Silicone Oil is not recommended for Oxygen (O2) or Chlorine service.
- (3) Not applicable for vacuum service.
- (4) Drain/Vent not applicable.
- (5) O'Ring should be Viton or Kalrez.
- (6) Maximum pressure 24 bar
- (7) For Remote Seal only 316 SST CF8M (ASTM A351) flange is available (7/16 UNF).
- (8) Fluorolube fill fluid is not available for Monel diaphragm.
- (9) Options not certified for use in hazardous locations
- (10) Attention, check corrosion rate for the process, tantalum plate 0.1 mm, AISI 316L extension 3 to 6mm.
- (11) Degrees cleaning not available for carbon steel flanges.
 (12) Only available for ½" electrical connection.
 (13) Only available for flange ANSI B16.5.
- (14) Not available for flange JIS 2202.
- (15) For this option consult Smar
- (16) Not available for Aluminum housing.
- (17) Effective for hydrogen migration process

- (18) Inert Fluid: safe for oxygen service.
- (19) Not applicable for saline atmosphere.
 (20) IPW/TYPEX tested for 200h to according with standard NBR 8094 / ASTM B 117.
- (21) Certificate for use in Explosion Proof (CEPEL).
- (22) Not available for slip-on flange.
- (23) Item by inquiry.
- (24) Supplied without gasket.
- (25) SIL 1 and SIL 2 (non-redundant) and SIL 3 (redundant) applications. (26) IPX8 tested in 10 meters of water column for 24 hours.

Products	CEPEL	NEMKO / EXAM	FM
LD400	IP66/68W	IP66/68W	Type 4X/6P

(28) Not available for integral flange



MODEL	SA	NITA	RY P	RESSI	URE .	TRAN	ISMIT	TER												
LD400	Sn	nart Pi	ressu	ıre Trar	nsmitt															
	COD.	Тур	е				Range in	Limit Max	ts Unit		Ra Min	ange I Ma	Limits	S Unit	1	Turn Down Max				
	S2 S3 S4 S5	\$3 Sanitary \$4 Sanitary \$5 Sanitary						50 250 250 250 25	kPa kPa kPa MPa		-500 -2500 -25 -25	50 250 250 250	0 i 0 i 5	mbar mbar bar bar		120 120 120 120	Not	LRL and	d 1.2 URI cy. The u	be extended up to 0.75 L with small degradation of pper range value must be age rating.
		COD.	Dia	aphrag	ım Ma	ateria	l and	Fill Fl	uid											
		1 2 3 4 5 7 8 9 A D E G	31/ Ha Ha Mc Tai 31/ Mc 31/ Ha Tai	6L SST 6L SST astelloy astelloy onel 40 ontalum ntalum 6L SST onel 40 6L SST astelloy ontalum 2 316L	Γ C276 C276 0 Γ C276	6	Ine Silid Ine Silid Ine For Ine Ine Ine	cone (rt (Fluctone (cone (rt (Fluctone) mblim mblim rt (Kry rt (Kry rt (Kry	orolube Dil (1) (orolube Dil (1) (Dil (2) orolube Oil Oil (1) tox Oil	e Oil) (1 2) e Oil) (3) (16)) (1) (16)) (16)) (3) (1) (16)	6)		K M G G G G G G G G G G G G G G G G G G	Monel 4 GP 316l GP Mon GP Mon 16L SS lastello antalur GP 316l 16L SS 16L SS 16L SS	L SST - OP lel 400 lel 400 ST by C276	Inert (Fluorolu Inert (Krytox C Silicone Oil (1 Inert (Krytox C Inert (Halocarl Inert (Halocarl Inert (Halocarl Inert (Halocarl Silicone Oil (9 Inert (Fluorolu Inert (Krytox C Inert (Halocarl	Dil) (1) (16) Dil) (1) (16) Dil) (10) (1) Dil) (1) (16) DON 4.2 Oi DON 4.2 Oi DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON Oil) (1 DON OIL) (1	(14) (16) (14) (16) (1) (16) (16) (16) (14) (16)	Note: GP=Gold Plated OP= Over-Lay Pot
i			COI	D. Pe	rform	nance	Clas	s												
			0	Sta	andar	ď														
	i	Ĺ		COI	D. C	omm	unica	tion F	rotoco	ol										
	1			Н	Н	IART	® & 4 t	o 20 n	nA											
					CC	DD.	Safety	y Opti	ons											
			i							in mea				trol						
i			i							Adapte		- ' '		nt Valv	es Mat	erial				
							Н	Hast	elloy C	276 (C\	N-12M	W, AS	TM - A	4494)			I CF8M /	316 SST		
	i	i		i		i	\top	COD.	Wette	ed O'Ri	ing Ma	terials	s (Lov	v Side))					
								0 B E	Buna	out O'R a-N lene - P	-	ne				K Kalrez T Teflon V Viton		Note:		are not available on s with Remote Seals.
i			i					Т	COD.	Drain	/Vent F	Positio	on (Lo	ow Sid	e)					
									0 A D U					Proces	ss Con	nection)	S	trongly re	ecommer	nt operation, vent valves are nded. Drain/vent valve not es with remote seals.
	i	i		i		İ			Ĭ	COD.	Proce	es Co	onnec	ction (L	ow Si	de)				
						l		i	i.	0				thout A		•		T 1/2 -	14 BSP (With Adapter)
										1 3 5 9	1/2 - Remo 1/2 -	14 NP ote Se 14 NP	T (Wit al (Wi T Axia	th Adap th Plug al with	oter) g) (7) PVDF	/ Insert (3) (4) Inge) (3) (7)		U FlangV Without	e for Lev	el with Welded Plug ection (Mounted with Gage)
									- !					pplicat		0 / (/ (/				
						 					0 1 2	Degr	rease	I Clear Cleani m App	ng (Ox		orine Service) (1	1)		
I			- 1			ĺ	1	i	i.	1	Ī						erial (Low Side)		
				- !		ļ.		1				Р	Plat	ted Ca		teel (19)			H Has	telloy C276
											İ	C		SST bon St	eel (AS	STM A193 B7	7M) (1) (19)			
											ĺ		COD). Fla	nge Th	read for Fix	ing Accessorie	s (Adapte	ers, Mani	folds, Mounting Brackets, etc)
						 							0 1 2	M1	6 UNF 0 X 1.5 2 X 1.7	5				
				i				i	i											
	100	1	1	i		i i	1	1			i	i.								

Orderina Code (Continued)

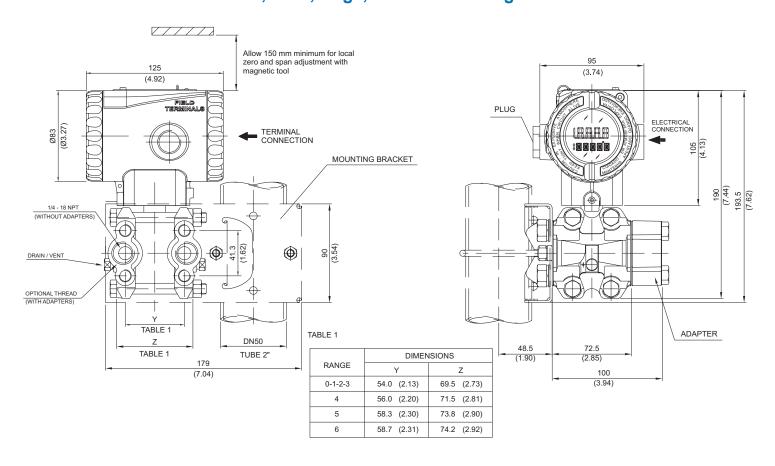
Notes:

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
- (2) Silicone Oil is not recommended for Oxygen (O₂) or Chlorine service
- (3) Not applicable for vacuum service.
- (4) Drain/Vent not applicable.(5) O-ring should be Viton or Kalrez.
- (6) Maximum pressure 24 bar.
- (7) For Remote Seal only 316 SST CF8M (ASTM A351) flange is available (7/16 UNF).
- (8) Fluorolube fill fluid is not available for Monel diaphragm. (9) Options not certified for use in hazardous locations.
- (10) Not recommended with extension.
- (11) Degrease cleaning not available for carbon steel flanges
- (12) Only available for ½" electrical connection. (13) Only available for TRI-CLAMP connection. (14) Not available for Aluminum housing

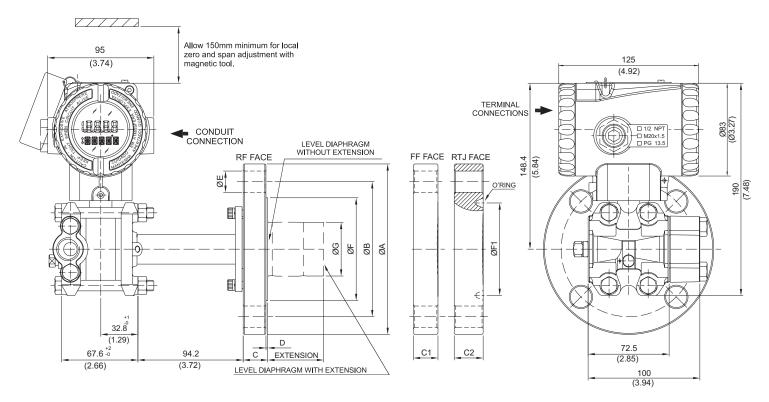
- (15) Effective for hydrogen migration process.
- (16) Inert Fluid: safe for oxygen service.(17) Not applicable for saline atmosphere.
- (18) IPW/TYPEX tested for 200h to according with standard NBR 8094 / ASTM B 117. (19) Certificate for use in Explosion Proof (CEPEL).
- (20) SIL1 and SIL2 (non-redundant) and SIL3 (redundant)
- (21) Compliant with 3A-7403 standard for food and other applications where sanitary connections
- (22) IPX8 tested in 10 meters of water column for 24 hours.
- (23) Ingress Protection:

Products	CEPEL	NEMKO / EXAM	FM
LD400	IP66/68W	IP66/68W	Type 4X/6P

MODEL /	MAI	N COD	CON	TINUE	D (FOF	HAR	T® TRAN	MITTERS)	
	COD.	Burn-	out						
	BD BU	Down Up So	Scale ale (Ad	(According	ding to g to NA	NAML MUR	IR NE43 NE43 sp	pecification) (Default))
		COD.		1 Indic					
		Y0 Y1		1: Perd 1: Curr			ult)		
		Y2 Y3					ering Un ineering	nit)	
		YU		1: User			on (2)		
		i.	COD.		2 Indic 1: Perc		e (Defau		
		1	Y1 Y2	LCD	2: Curr	ent - Ĭ		a Unit)	
	i		Y3 YU	LCD	2: Tem	peratu		ering Únit)	
	i			COD.			cation	-,	
				Y0 Y1			centage rent - I (
				Y2 Y3	LCD	3: Pre	ssure (È	ineering Unit) Engineering Unit)	
				YÜ	LCE	3: Use	er's Spec	cation (2)	
			İ		COD.		Availab	•	
			i		P0 P1	Ava		disabled (Default)	
					P2	COD.	ilable ar Tran	enabled er Function for Flow	w Measurement
		i				F0		(Default)	W MOUSE CONTROL
		i			j	F1	This	nction is used in flow	dering the pressure input X varying between 0 and 100%, the output will be $10\sqrt{x}$. varying between the dec. (3)
			i			F2	Flow	easurement with wei	_
						F3	chan	I Flow measurement	the Fifth Power. The output will be $0.001\sqrt{x^5}$. This function is used in open t with V-notch weirs. (3)
						F4	the L		rve formed by 16 points. These points may be edited directly on the XY Table of may be used as a camber table for tanks in applications where the tank volume is neasured pressure.
		i			j	F5	comp	nsation of, e.g., varyi	oot and Table. Same application as square roots, but also allows additional ing Reynolds number. (3)
						F6 F7			re Root of the Third Power and Table. (3) re Root of the Fifth Power and Table. (3)
			į			F8	TAB	& SQRT - Table an	of Square root. Same application as square roots, but also allows bi-directional cting the inverse flow, transforming the negative flow in positive flow, via table. (3)
		- !		I		1	COD.	Special Features	
							M0 M4 M5 M6	No Special Features Calibration by increas 10-point calibration Special acquisition di	sing and decreasing the pressure (Hysteresis)
								DD. Insulation Ki	
								Without Insulation	
			İ						al Features
		j	i						Specification
i İ	i	i	i	j	j		i		
LD400-D210-H0-IBD11-P01-0I1-A010	DH	Vo	Vo	V.	De		MO	77	TYPICAL MODEL
	BU	Y2	Y3	Y1	P2	F1	M0	ZZ	1 TPICAL MODEL
LD400-L210-H0-PBD00-P01-I01-L110I-A010	BD	Y2	Y3	Y1	P2		MO	1 ZZ	
LD400-S210-H0-HBDU0-P04-B10-I110I-A060	BD	Y2	Y3	Y1	P2		MO	ZZ	


(1) Fill in only if selected option is different from the default value. (2) Values limited to 4 1/2 digits; unit limited to 12 characters.

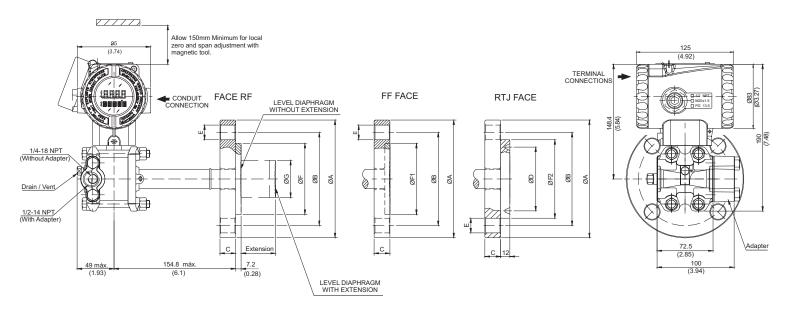
- (3) Only available for differential, gage, absolute and high static pressure models. (4) Only available for level models.



LD400 - Differential Pressure, Flow, Gage, Absolute and High Static Pressure Transmitter

LD400L - Flanged Pressure Transmitter with Integral Flange

Notes:

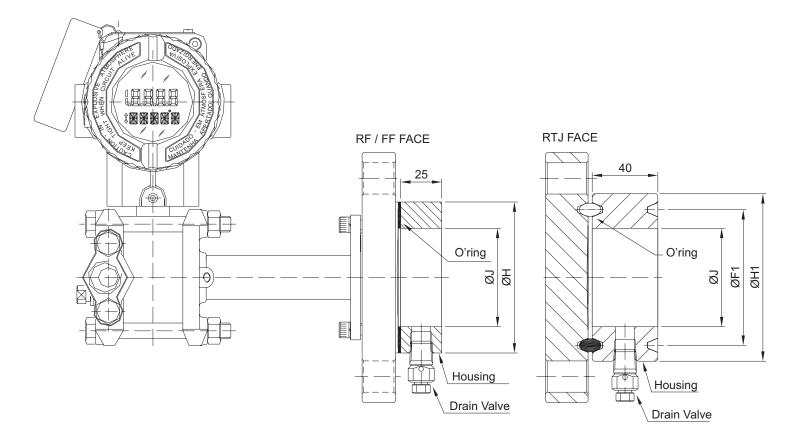

- Extension lenght (mm): 0, 50, 100, 150 or 200
- Dimensions are mm (in)

										ANSI-B 1	6.5 D	IMENSI	ONS								
DN	CLASS	P	4	E	3	C (RF)	C1	(FF)	C2 (RTJ)	D	(RF)		E	F (F	RF)	F1 (RTJ)	RTJ O'RING		G	HOLES
	150	127	(5)	98.6	(3.88)	20	(0.78)	19	(0.75)	24.4 (0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1 (2.56)	R19	40	(1.57)	4
1.1/2"	300	155.4	(6.12)	114.3	(4.5)	21	(0.83)	21	(0.83)	27.4 (1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	600	155.4	(6.12)	114.3	(4.5)	29.3	(1.15)	29.3	(1.15)	29.3 (1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	22	(0.87)	20	(0.78)	25.9 (1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R22	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	22.8	(0.9)	22.8	(0.89)	30.8 (1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	32.3	(1.27)	32.3	(1.27)	32.3 (1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	24.4	(0.96)	24.4	(0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3 (4.50)	R29	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	29	(1.14)	29	(1.14)	36.9 (1.45)	1.6	(0.06)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	38.7	(1.52)	38.7	(1.52)	40.2 (1.58)	6.4	(0.25)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	24.4	(0.96)	24.4	(0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2 (5.87)	R36	96	(3.78)	8
4"	300	254	(10)	200	(7.87)	32.2	(1.27)	32.2	(1.27)	40.2 (1.58)	1.6	(0.06)	22	(0.87)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	600	273	(10.75)	215.9	(8.5)	45	(1.77)	45	(1.77)	46.5 (1.83)	6.4	(0.25)	25	(1)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
										EN 1092	-1 DII	MENSIC	DNS								
DN	PN	А		В		C (RF)	C1	(FF)			D	- 1	=	F (F	RF)			-	G	HOLES
DN40	10/40	150	(5.9)	110	(4.33)	20	(0.78)	20	(0.78)	/	3	(0.12)	18	(0.71)	88	(3.46)			40	(1.57)	4
DN50	10/40	165	(6.5)	125	(4.92)	20	(0.78)	22	(0.86)		3	(0.12)	18	(0.71)	102	(4.01)			48	(1.89)	4
DN80	10/40	200	(7.87)	160	(6.3)	24	(0.95)	24	(0.94)		3	(0.12)	18	(0.71)	138	(5.43)	_		73	(2.87)	8
DN100	10/16	220	(8.67)	180	(7.08)	20	(0.78)				3	(0.12)	18	(0.71)	158	(6.22)			96	(3.78)	8
	25/40	235	(9.25)	190	(7.5)	24	(0.95)			/	3	(0.12)	22	(0.87)	162	(6.38)			96	(3.78)	8
										JIS B 22	02 DII	MENSI	ONS								
DN	CLASS	А		В		(0					D	- 1	=	F (F	RF)				G	HOLES
40A	20K	140	(5.5)	105	(4.13)	26	(1.02)				2	(80.0)	19	(0.75)	81	(3.2)			40	(1.57)	4
50A	10K	155	(6.1)	120	(4.72)	26	(1.02)				2	(0.08)	19	(0.75)	96	(3.78)			48	(1.89)	4
	40K	165	(6.5)	130	(5.12)	26	(1.02)				2	(0.08)	19	(0.75)	105	(4.13)			48	(1.89)	8
80A	10K	185	(7.28)	150	(5.9)	26	(1.02)			•	2	(0.08)	19	(0.75)	126	(4.96)			73	(2.87)	8
OUA	20K	200	(7.87)	160	(6.3)	26	(1.02)				2	(0.08)	19	(0.75)	132	(5.2)			73	(2.87)	8
100A	10K	210	(8.27)	175	(6.89)	26	(1.02)				2	(0.08)	19	(0.75)	151	(5.95)			96	(3.78)	8

LD400L - Flanged Pressure Transmitter with Slip-on Flange

	ANSI-B 16.5 DIMENSIONS																		
DN	CLASS	-	4	Е	3		C D)	Е		F (RF)		F1 (FF)		F2 (RTJ)	G		HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)			16	(0.63)	50.8	(2)	50.8	(2)	-		-	4
'	300/600	124	(4.88)	88.9	(3.5)	17.5	(0.69)		-	19	(0.75)	50.8	(2)	50.8	(2)	-		-	4
1 1/2"	150	127	(5)	98.4	(3.87)	17.5	(0.69)			16	(0.63)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
1 1/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)			22	(0.87)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6 (4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(8.0)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4 (5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5 (6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8

				EN	1092-1	1 / DI	DIMENSIONS- RF/ FF							
DN	PN		A B		3		С		E		F		3	HOLES
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8
400	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8

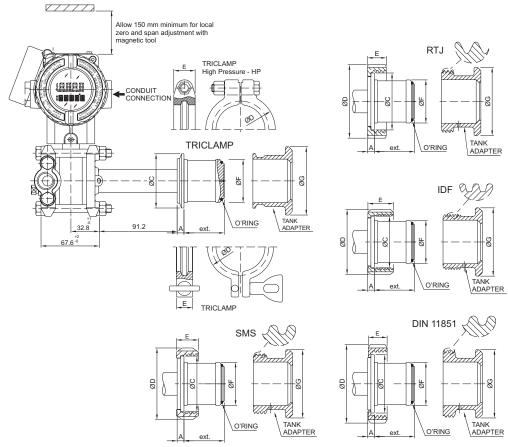

NOTES:

- Extension Lenght mm (in): 0, 50 (1.96) 100 (3,93), 150 (5.9) ou 200 (7.87)
- Dimensions are mm (in)

LD400L - Flanged Pressure Transmitter with Housing

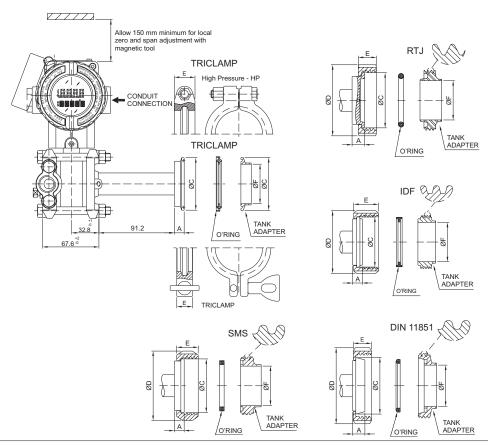
DIMENSIONS IN mm (")

	ANSI-B 16.5 E	DIMENSIONS											
DN	CLASS	Н	J										
1.1/2"		73.2 (2.88)	48 (1.89)										
2"	ALL	91.9 (3.62)	60 (2.36)										
3"		127 (5.00)	89 (3.50)										
4"		158 (6.22)	115 (4.53)										
FORM D DIMENSIONS DIN EN1092-1/ DIN2501/2526													
DN	PN	Н	J										
40		88 (3.46)	48 (1.89)										
50		102 (4.02)	60 (2.36)										
80	ALL	138 (5.43)	89 (3.50)										
100		158 (6.22)	115 (4.53)										
	JIS B 2202 D	IMENSIONS											
DN	CLASS	Н	J										
40A	20K	81 (3.19)	48 (1.89)										
50A	10K	96 (3.78)	60 (1.36)										
SUA	40K	105 (4.13)	60 (1.36)										
904	10K	126 (4.96)	89 (3.50)										
80A	20K	132 (5.20)	89 (3.50)										
100A	10K	151 (5.94)	115 (4.53)										

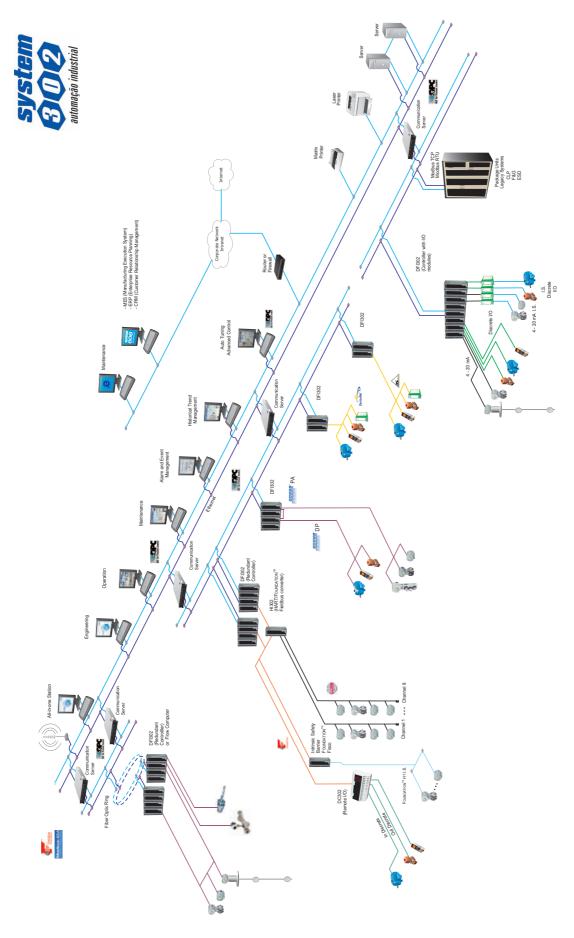

DIMENSIONS IN mm (")

ANSI-B 16.5 DIMENSIONS - RTJ FACE													
DN	CLASSE	F1	O'RING	H1	J								
	150	65.1 (2.56)	R19	82.5 (3.25)	48 (1.89)								
	300	68.3 (2.69)	R20	90.5 (3.56)	48 (1.89)								
1.1/2"	600	68.3 (2.69)	R20	90.5 (3.56)	48 (1.89)								
	1500	68.3 (2.69)	R20	92 (3.62)	48 (1.89)								
	2500	82.6 (3.25)	R23	114 (4.50)	48 (1.89)								
	150	82.6 (3.25)	R22	102 (4.00)	60 (2.36)								
	300	82.6 (3.25)	R23	108 (4.25)	60 (2.36)								
2"	600	82.6 (3.25)	R23	108 (4.25)	60 (2.36)								
	1500	95.3 (3.75)	R24	124 (4.88)	60 (2.36)								
	2500	101.6 (4.00)	R26	133 (5.25)	60 (2.36)								
	150	114.3 (4.50)	R29	133 (5.25)	89 (3.50)								
3"	300	123.8 (4.87)		146 (5.75)	89 (3.50)								
	600	123.8 (4.87)	R31	146 (5.75)	89 (3.50)								
	150	149.2 (5.87)	R36	171 (6.75)	115 (4.53)								
4"	300	149.2 (5.87)	R37	175 (6.88)	115 (4.53)								
	600	149.2 (5.87)	R37	175 (6.88)	115 (4.53)								

LD400S - Sanitary Transmitter With Extension



		LD400S					
CONNECTIONW ITH			Dime	nsions in m	nm (")		
EXTENSION	А	ØС	ØD	E	ØF	ØG	EXT.
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	52 (2.05)	80 (3.15)	47.2 (1.86)
Tri-Clamp DN50H P	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	52 (2.05)	80 (3.15)	47.2 (1.86)
Tri-Clamp-2 "	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	52 (2.05)	80 (3.15)	47.2 (1.86)
Tri-Clamp-2 "H P	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	52 (2.05)	80 (3.15)	47.2 (1.86)
Tri-Clamp-3 "	8 (0.315)	91 (3.58)	110 (4.33)	18 (0.71)	72.5 (2.85)	100 (3.94)	50 (1.96)
Tri-Clamp-3 "H P	8 (0.315)	91 (3.58)	115 (4.53)	25 (0.98)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded DN25-D IN 11851	6 (0.24)	47.5 (1.87)	63 (2.48)	21 (0.83)	43.2 (1.7)	80 (3.15)	26.3 (1.03)
Threaded DN40-D IN 11851	8 (0.315)	56 (2.2)	78 (3.07)	21 (0.83)	52 (2.05)	80 (3.15)	47.2 (1.86)
Threaded DN50-D IN 11851	8 (0.315)	68.5 (2.7)	92 (3.62)	22 (0.86)	52 (2.05)	80 (3.15)	47.2 (1.86)
Threaded DN80-D IN 11851	8 (0.315)	100 (3.94)	127 (5)	29 (1.14)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded SMS-2 "	8 (0.315)	65 (2.56)	84 (3.3)	26 (1.02)	52 (2.05)	80 (3.15)	47.2 (1.86)
Threaded SMS-3 "	8 (0.315)	93 (3.66)	113 (4.45)	32 (1.26)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded RJT- 2"	8 (0.315)	66.7 (2.63)	86 (3.38)	22 (0.86)	52 (2.05)	80 (3.15)	47.2 (1.86)
Threaded RJT- 3"	8 (0.315)	92 (3.62)	112 (4.41)	22.2 (0.87)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded IDF-2 "	8 (0.315)	60.5 (2.38)	76.2 (3)	30 (1.18)	52 (2.05)	80 (3.15)	47.2 (1.86)
Threaded IDF-3 "	8 (0.315)	87.5 (3.44)	101.6 (4)	30 (1.18)	72.5 (2.85)	100 (3.94)	50 (1.96)



LD400S - Sanitary Transmitter Without Extension

		LD400S					
CONNECTION WITHOUT			Dime	nsions in n	nm (")		
EXTENSION	А	ØС	ØD	E	ØF	ØG	EXT.
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.5 (1.87)		
Tri-Clamp-11 /2"	12 (0.47)	50 (1.96)	61 (2.4)	18 (0.71)	35 (1.38)		
Tri-Clamp-11 /2"H P	12 (0.47)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)		
Tri-Clamp-2 "	12 (0.47)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.6 (1.87)		
Tri-Clamp-2 "H P	12 (0.47)	63.5 (2.5)	81 (3.19)	25 (0.98)	47.6 (1.87)		
Tri-Clamp-3 "	12 (0.47)	91 (3.58)	110 (4.33)	18 (0.71)	72 (2.83)		
Tri-Clamp-3 "H P	12 (0.47)	91 (3.58)	115 (4.53)	25 (0.98)	72 (2.83)		
Threaded DN40-D IN 11851	13 (0.51)	56 (2.2)	78 (3.07)	21 (0.83)	38 (1.5)		
Threaded DN50-D IN 11851	15 (0.59)	68.5 (2.7)	92 (3.62)	22 (0.86)	50 (1.96)		
Threaded DN80-D IN 11851	16 (0.63)	100 (3.94)	127 (5)	29 (1.14)	81 (3.19)		
Threaded SMS -11 /2"	12 (0.47)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)		
Threaded SMS -2 "	12 (0.47)	65 (2.56)	84 (3.3)	26 (1.02)	48.6 (1.91)		
Threaded SMS -3 "	12 (0.47)	93 (3.66)	113 (4.45)	32 (1.26)	73 (2.87)		
Threaded RJT -2 "	15 (0.59)	66.7 (2.63)	86 (3.38)	22 (0.86)	47.6 (1.87)		
Threaded RJT -3 "	15 (0.59)	92 (3.62)	112 (4.41)	22.2 (0.87)	73 (2.87)		
Threaded IDF- 2"	12 (0.47)	60.5 (2.38)	76 (2.99)	30 (1.18)	47.6 (1.87)		
Threaded IDF- 3"	12 (0.47)	87.5 (3.44)	101.6 (4)	30 (1.18)	73 (2.87)		

LD400 Series

Pressure

Pressure, Level and Flow

Level

Density/Concentration

4-20 mA LD290

Pressure Transmitter with high performance

Level Transmitter

Intelligent Density / Concentration Transmitter

Pressure Transmitter

Gauge Economic **Capacitive Pressure Transmitter**

Pressure Transmitter

Position

Valve Positioner

Valve Positioner with auto tuning

Valve Positioner with remote sensor

Position Transmitter

Temperature

Temperature Transmitter

Panel Mounting Temperature Transmitter

Head Mouting Temperature Transmitter

Junction Box

Interfaces

3 Wavs Junction Box JM1

4 Wavs Junction Box JM400

4-20 mA

Configurators

HART® Configurator Interface CONF401

HART® Configurator Interface DDCON 100

HART® Configurator for Palm HPC301

HART-RS232 Interface HI311

HART-USB Interface HI321

Converters

Fieldbus to Pneumatic Signal Converter

Current to Fieldbus Converter

Fieldbus to Current Converter

HART® / Fieldbus Interface HI302

HART®/Current Converter HCC301

Controllers

Programmable Logical Controller LC700

Digital Controller CD600Plus

Interface Universal Fieldbus **DFI302**

Systems

ProcessView

Process Visualization Tool

AssetView

On Line Plant Asset

Management Tool

Studio302

System302 Management Tool

Syscon **System Configurator**

Equipment Database Plant Information Management

LogicView IEC61131 **Programming Tool**

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

